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This paper describes the power series solution for modelling of the simply supported circular
diaphragm deflection under uniform load. The parameters such as touch point pressure and
touch radius are defined. Moreover, these parameters are also computed by the algorithm
proposed in the paper. Therefore, the power series solution can be applied for touch mode
operation.
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1. Introduction

Miniaturisation and integration of electronic devices have made far reaching technological revolu-
tions. Integration of micromechanics on the same chip has resulted in Micro-Electro-Mechanical
System (MEMS) that have added newer dimensions to conventional ICs. With the advent of
micromachining technology, which is compatible with the conventional IC industry, MEMS ha-
ve become dominant in many areas of applications. MEMS have main applications in sensors,
actuators and smart structures. Commercially successful devices and systems using MEMS tech-
nology include many microsensors (e.g. pressure sensors, inertial sensors, chemical sensors, etc.),
microactuators (e.g. microvalve, micropumps, microrelays, etc.) and Microsystems (e.g. for che-
mical analysis, biological analysis, etc.) One of the most common MEMS devices are pressure
microsensors. Due to demand for lower cost and smaller dimensions, transition from mechanical
to silicon type has occurred. The concept of touch mode capacitive pressure sensors has several
advantages over normal mode sensors (Ding et al., 1990; Hejarzaribi et al., 2011; Ko, ; Ko and
Mehregany, 1992; Ko et al., 1996; Rosegren et al., 1992). As the result of effort to improve line-
arity and overload ability, the touch mode sensor has been developed. It has the advantages such
as good linearity, large operating pressure range, zero suppression possibility and large overload
protection. The touch mode capacitive pressure sensor consist of at least one pressure sensitive
capacitor. One electrode is formed on the stationary substrate of silicon, glass or other insulating
materials; the other is a diaphragm made of silicon, poly-silicon, silicon carbide, etc. When a
pressure is applied, the diaphragm deforms and changes the gap between the two electrodes,
hence, the capacitance will change (Wang, 1997).
In response to the load applied, the core of the touch mode capacitive sensor design is to

compute the diaphragm deflection behaviour, which is controlled by sensor structural parame-
ters. Based on the theory of pure bending of a circular plate (Timoshenko, 1959), we can solve
this problem in different ways based on different assumptions: small deflection model, large de-
flection model and finite element analysis. The small deflection model is a simple model that
neglects the strain of the middle plane in the plate, therefore it can only be used for approxi-
mation, assuming that the deflection at centre is small compared to the diaphragm thickness.
Finite element analysis provides the accurate results but it takes a long time to compute and
post data process. So these two methods have not been taken into consideration. The paper
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describes the application of the large deflection model in the circular diaphragm touch mode
sensor design with a simplified simulation. It can be used not only as an analytical solution but
also as a design tool that includes numerical computation and linear analysis.

Fig. 1. Element of a circular plate for application in the touch mode capacitive sensor

We use a thin circular diaphragm to model the circular diaphragm as shown in Fig. 1,
where u stands for the displacement in the radial direction, w is the deflection in the direction
perpendicular to the plate, E is the young’s modulus, ν is Poisson’s ratio, h is thickness of the
plate. The following parameters are listed below:
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— bending stress
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σ′t =
6Mt
h

shearing force resultant from the lateral load
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r

r
∫

0
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Considering the equilibrium condition of the element of the circular plate as shown in Fig. 1, we
get three governing equations by summing the forces, summing the moments and considering
the relationship between the radial and tangential strain, respectively.
Finally, we have a set of governing equations as in the following
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(1.1)

This set of equations is universal to all situations of bending of the circular plate under load for
non-touch operation. The equations can be modified for different shapes of load, such as uniform
load, distributed load and concentrated load.

2. Power series solution of the circular diaphragm under uniform load

We have a set of non-linear differential equations governing the bending behaviour of the circular
plate. Equations (1.1)where Nr, Nt and w are three unknown functions. Our task is to solve the
equations to get an expression for Nr(r), Nt(r) and w(r).
First, we transform the equations into a dimensionless form by introducing the following

notations

p =
q

E
Sr =

Nr
Eh

St =
Nt
Eh

An exact solution to the problem can be obtained by a series method. Since the symmetry is
axial, we have dw/dr = 0 and Nr = Nt at r = 0. Since the radial couple must vanish on the
edge, the further condition is

[ d
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)

+
ν

r
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]

r=a
= 0 (2.1)

Assuming the edge to be immovable, we have St− νSr = 0, which by Eq. (1.1)1 is equivalent to

[

Sr(1− ν) + r
dSr
dr

]

r=a
= 0 (2.2)

The function Sr and dw/dr may be represented again in form of the series
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where ρ = r/a. Using the series, we arrive at the following relations between constants B and C

Bk = −
1− ν2

2(k2 − 1)

k−2
∑

m=1,3,5,...

CmCk−m−1 k = 3, 5, . . .

Ck =
1
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∑
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CmBk−m−1 = 8C3 −B1C1 + 12
√
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pa4

h4
= 0 k = 5, 7, . . .

(2.4)

Again, all constants can be easily expressed in terms of both constants B1 and C1, for which
two additional relations, ensuring for boundary conditions, hold

∑

k=1,3,5,...

Bk(k − ν) = 0
∑

k=1,3,5,...

Ck(k + ν) = 0 (2.5)

To start the resolution of the foregoing system of equations, suitable values of B1 and C1 may
be taken on the basis of an approximate solution. Such a solution, satisfying equation (2.1), can
be for instance of the form

dw

dr
= C(βρn − ρ) (2.6)

where C is the constant and β = (1 + ν)/(n + ν) (n = 3, 5, . . .).
Further, we derive that
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C2

2

(
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8

)
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Herein c1 and c2 are constants of integration and n1 = 4n(n+ 1) and n2 = (n + 1)(n + 3). The
constant C can be determined by some strain energy method.
Till here, the series solution is used for non-touched operation. Discontinuity is introduced

when the plate touches the substrate. Therefore, the solution sets need to be modified for touch
mode applications.

3. Application to touch mode sensors

Figure 2 shows the cross section of the touch mode capacitive sensor. Especially for touch mode
application sensors of capacitive, we consider the problem with simply supported boundary
conditions.

Fig. 2. Cross-section of the touch mode capacitive pressure sensor

As shown in Fig. 2, the distance between the bottom of cavity and the undeformed diaphragm
is defined as gap. The pressure value at which the diaphragm deforms to touch the bottom of the
cavity is defined as the touch point pressure. So the centre deflection of the diaphragm is equal
to the gap. a is radius of the diaphragm, t is thickness of the insulating layer on the bottom of
the cavity, b is radius of the touched area that expands as the load increases, which is termed
as ‘touch radius’.
In the touch mode application, the touch radius b is an important parameter. It is a function

of the load q. On the introduction of touch radius and on the assumption that the untouched
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part of the diaphragm can be approximated by a diaphragm with reduced radius, we can rewrite
the power series solution in the following form with (ρ− b/h) as the variable
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Now the problem evolves into determination of the four constants c1, C0, C1 and b. Practically
all the four constants cannot be determined by iteration. To overcome this difficulty, we propose
the following approach to simplify the computing procedure.

An approximation for calculation of the touch radius b has been used. Before the touch point,
the touch radius b is certainly zero. For a given load q larger than the touch point pressure, we
can calculate the equivalent radius a′ of a virtual circular diaphragm whose touch point pressure
is q. This can be done by assigning the centre deflection the value of the gap (Timoshenko,
1959), as shown in Eq. (3.2)4

a′ = 4

√

gap64D

q

(

1 + 0.488
gap2

h2

)

(3.2)

Now, the touch radius is the difference between the actual radius a and equivalent radius a′ as

b = a− a′ (3.3)

C0 should be decided by the maximum deflection of the circular diaphragm. Equations (3.4) and
(3.5) shows the numerical evaluation of C0 for both cases:

— before the touch point
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— after the touch point
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2
√
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2
√
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Since b and C0 have been determined, the other two constants, B0 and C1 can be determined
by iteration. Thus we can find a set of Bk and Ck to form the power-series solution.

4. Results and discussions

Based on the analysis in the previous Sections, a Matlab program has been written to obtain
the characteristics. The program implements subroutines to compute the distribution of diaph-
ragm deflection and stress under load. The characteristic of the capacitive sensor has also been
calculated using the results for deflection.

The pressure versus capacitance plot has been obtained to describe the characteristics of the
capacitive sensor as described by the equations analysed in the section above.
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Fig. 3. Characteristics calculated by the power series solution

Fig. 4. Comparison of diaphragm deflection: (a) before the touch point, (b) after the touch point

Figure 4a shows the deflection behaviour of the diaphragm before the touch point when q =
18 psi (0.12MPa), a = 100µm, h = 2µm, gap = 2µm. In contrast, Fig. 4b shows the deflection
behaviour of the diaphragm after the touch point when q = 50 psi (0.34MPa, a = 100µm,
h = 2µm, gap = 2µm. It is clear that deflection increases after the touch (Han and Shannon,
2009; Gupta and Ahmad, 2003; Lee and Jun, 2011).

Figure 5 shows the comparison of the diaphragm stress distribution under certain pressure
load. Figure 5a is for 18 psi which is the before touch point while Fig. 5b is after the touch point
for a pressure of 50 psi.
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Fig. 5. Comparison of stress distribution: (a) before the touch point, (b) after the touch point

5. Conclusion

The power series solution is a promising method to do quick estimation of the diaphragm stress
distribution and deflection. It can give relatively accurate results if they are compared with the
results of ABAQUS (a finite element analysis software). For even quicker estimation, the analysis
can be done using a spread sheet solution program by the help of Microsoft Excel and Visual
Basic. Here, linear analysis is applied to the data within the operation range of sensors for a
quick estimation. ABAQUS, on other hand, takes a large amount of time for data processing.
It has been seen that the results of two differ by around 2-5%, which is within an acceptable
range. The deflection and stress on every node of the diaphragm is obtained from MATLAB,
and they are used to calculate the performance of a touch mode capacitive pressure sensor.
The touch point pressure is an important specification in the touch mode capacitive pressure
sensor design. The linearity and sensitivity in the linear range are all related to the touch point
pressure. The power series solution is specially useful for the touch mode sensor application
because it treats the touch mode plate using the same form of the power series used for the
untouched mode. Additionally, the power series solution is flexible. It can be easily implemented
for the situation with other shapes of load provided the load can be expanded in a power series
of radial displacement.
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